Related Topics
From Cardiovascular System
Mitral Valve
Valve between the left atrium and left ventricle.
Overview
The mitral valve, also known as the bicuspid valve or left atrioventricular valve, is a key structure within the heart that regulates blood flow between the left atrium and the left ventricle. It ensures unidirectional flow of oxygenated blood from the lungs into the systemic circulation. Proper function of the mitral valve is critical to maintaining efficient cardiac output and preventing backflow into the atrium during ventricular contraction.
Location
The mitral valve is located between the left atrium and the left ventricle of the heart. It lies posterior and slightly to the left of the sternum at the level of the 4th intercostal space. The valve is situated in the left atrioventricular orifice and opens into the left ventricle, allowing blood to move during diastole and closing during systole to prevent regurgitation.
Structure
The mitral valve is composed of several interconnected anatomical components:
Two leaflets:
Anterior leaflet: Larger and semicircular, more mobile.
Posterior leaflet: Narrower and subdivided into scallops.
Annulus: A fibrous ring that provides structural support and maintains valve shape during the cardiac cycle.
Chordae tendineae: Fibrous cords that attach the valve leaflets to papillary muscles and prevent prolapse into the atrium.
Papillary muscles: Located in the left ventricle, these muscles contract to maintain tension on the chordae tendineae.
The valve is covered by endocardium and supported by the fibrous skeleton of the heart, ensuring durability and flexibility under high-pressure conditions.
Function
The primary function of the mitral valve is to:
Permit the flow of oxygenated blood from the left atrium into the left ventricle during ventricular diastole.
Prevent the backflow of blood into the left atrium during ventricular systole.
This one-way valve action is essential for efficient circulation, supporting left ventricular ejection into the aorta and systemic circulation.
Physiological Role(s)
Beyond basic mechanical function, the mitral valve plays roles in broader cardiovascular physiology:
Maintains cardiac efficiency: Proper timing and closure prevent volume overload and maintain forward flow.
Coordinates with atrial contraction: Optimal function aids atrial emptying and ventricular filling (preload).
Contributes to pressure gradients: Its tight seal ensures high-pressure buildup in the left ventricle, essential for strong systolic output.
Supports rhythm and conduction: The mitral annulus interacts with the fibrous skeleton of the heart, contributing to electrical isolation between atria and ventricles.
Clinical Significance
The mitral valve is frequently involved in structural and functional cardiac disorders:
Mitral Valve Prolapse (MVP): A condition where one or both leaflets bulge into the left atrium during systole, potentially leading to mitral regurgitation. Often benign but may cause palpitations or chest pain.
Mitral Regurgitation: Incompetent closure leads to backflow into the left atrium. Causes include prolapse, annular dilation, ischemic damage, or chordae rupture. Severe cases lead to volume overload and heart failure.
Mitral Stenosis: Narrowing of the valve opening, usually due to rheumatic heart disease. It impairs atrial emptying, causes pulmonary congestion, and increases risk of atrial fibrillation and thromboembolism.
Infective Endocarditis: Bacterial infection of the valve leaflets may cause destruction and vegetations, leading to acute valve dysfunction and systemic embolization.
Congenital Anomalies: Rare developmental defects such as parachute mitral valve or cleft leaflet may impair function in infants or young children.
Mitral Valve Replacement/Repair: Surgical or transcatheter interventions are indicated in severe mitral valve disease. Repair is preferred over replacement to preserve native anatomy when feasible.
Imaging and Assessment: Echocardiography (especially transesophageal), MRI, and Doppler studies are crucial for evaluating valve morphology, function, and severity of dysfunction.
Proper mitral valve function is essential for maintaining cardiac output, preventing pulmonary hypertension, and avoiding atrial arrhythmias. Early diagnosis and management of mitral valve disorders greatly influence patient outcomes and quality of life.
Did you know? A stroke happens when a blockage or rupture disrupts the normal flow of blood to the brain.