Logo

    Related Topics

    From Cardiovascular System

    External Jugular Veins
    Drain blood from the face and scalp.
    Pericardium
    Double-walled sac containing the heart and the roots of the great vessels.
    Brachiocephalic Trunk
    First major branch off the aortic arch.
    Interatrial Septum
    Wall separating the left and right atria.
    Common Carotid Arteries
    Major arteries supplying blood to the head and neck.
    Pulmonary Valve
    Valve between right ventricle and pulmonary trunk.
    Subclavian Arteries
    Supply blood to the arms and part of the brain.
    Abdominal Aorta
    Part of descending aorta within the abdomen.
    Fibrous Pericardium
    Outer layer of the pericardium made of dense connective tissue.
    Circumflex Branch
    Curves around to the posterior heart.
    Brachial Arteries
    Major artery of the upper arm.
    Radial Arteries
    Supply the lateral aspect of the forearm and hand.
    Tricuspid Valve
    Valve between the right atrium and right ventricle.
    Femoral Arteries
    Main arteries supplying the thighs.
    Anterior Interventricular Branch
    Supplies anterior interventricular septum (LAD).
    Dorsalis Pedis Arteries
    Supply blood to the dorsal surface of the foot.
    Left Superior Pulmonary Vein
    Returns oxygenated blood from left lung.
    Pericardial Cavity
    Space between parietal and visceral layers of the serous pericardium containing fluid.
    Femoral Veins
    Major deep veins of the thigh.
    Left Common Carotid Artery
    Supplies the head and neck.
    Axillary Arteries
    Continuation of subclavian arteries into the armpit.
    Ascending Aorta
    Initial portion of the aorta emerging from the heart.
    Serous Pericardium
    Inner layer of the pericardium consisting of parietal and visceral layers.
    Pulmonary Trunk
    Carries deoxygenated blood from right ventricle to lungs.
    Anterior Tibial Arteries
    Supply anterior compartment of the leg.

    Middle Cardiac Vein

    Reviewed by our medical team

    Drains the posterior heart.

    Overview

    The middle cardiac vein, also known as the posterior interventricular vein, is a prominent vein of the heart’s venous drainage system. It accompanies the posterior interventricular artery and is responsible for draining deoxygenated blood from the posterior regions of the heart, especially the interventricular septum and adjacent areas of both ventricles. It plays a key role in the coronary venous system and terminates in the coronary sinus, which ultimately drains into the right atrium.

    Location

    The middle cardiac vein originates near the apex of the heart and ascends within the posterior interventricular sulcus, traveling alongside the posterior interventricular branch of the right coronary artery (or left in some cases of left-dominant circulation). It continues upward to reach the base of the heart, where it enters the coronary sinus near its rightward end, close to the opening of the inferior vena cava.

    It lies on the diaphragmatic (inferior) surface of the heart and is easily identified during posterior views of the heart or in dissection studies.

    Structure

    The middle cardiac vein is a thin-walled vessel composed of three layers:

    • Endothelium: Inner lining allowing smooth blood flow

    • Muscular layer: Minimal smooth muscle for maintaining patency

    • Adventitia: Outer connective tissue layer that blends with the surrounding cardiac tissue

    It contains valves near its entry into the coronary sinus, though these are often inconsistent or rudimentary. Its size and caliber can vary, and it often anastomoses with the small cardiac vein and other posterior venous tributaries.

    Function

    The primary function of the middle cardiac vein is to:

    • Drain deoxygenated blood from the posterior interventricular septum

    • Drain parts of both the right and left ventricles, especially their inferior walls

    • Deliver this blood into the coronary sinus, which empties into the right atrium

    It works in parallel with other coronary veins like the great cardiac vein and small cardiac vein to ensure efficient venous return from myocardial tissue.

    Physiological Role(s)

    Though passive in nature, the middle cardiac vein supports several key physiological roles:

    • Coronary Venous Drainage: Contributes significantly to clearing metabolic waste and carbon dioxide from the myocardium, especially the interventricular septum.

    • Support During Exercise: Increases venous return under high cardiac output conditions by dilating to accommodate increased flow.

    • Pressure Buffering: Helps regulate pressure within the coronary circulation by draining blood into the low-pressure right atrium.

    Clinical Significance

    The middle cardiac vein holds various clinical and surgical implications:

    • Cardiac Venous Mapping: Its location and size are important during cardiac electrophysiology studies and for placement of cardiac resynchronization therapy (CRT) leads in biventricular pacing.

    • Coronary Sinus Cannulation: The middle cardiac vein is one of several tributaries that can be visualized or accessed during retrograde cardioplegia in cardiac surgery.

    • Imaging: May be visualized via cardiac CT, MRI, or retrograde coronary venography during preoperative planning or for evaluation of coronary venous anomalies.

    • Collateral Circulation: In cases of coronary artery disease, coronary veins including the middle cardiac vein may support the redistribution of blood via collateral venous channels.

    • Anomalies and Variants: Though rare, absence or duplication of the middle cardiac vein may occur and may influence outcomes during device implantation or venous interventions.

    Understanding the anatomy of the middle cardiac vein is essential for cardiologists, cardiac surgeons, and interventional radiologists involved in both diagnostic and therapeutic cardiac procedures.

    Did you know? The human circulatory system is about 60,000 miles long.