Logo

    Related Topics

    From Cardiovascular System

    Fossa Ovalis
    Remnant of the fetal foramen ovale.
    Left Subclavian Artery
    Supplies the left upper limb.
    Thoracic Aorta
    Part of descending aorta within the chest.
    Right Inferior Pulmonary Vein
    Returns oxygenated blood from right lung.
    Auricles
    Small muscular pouches of each atrium.
    Femoral Veins
    Major deep veins of the thigh.
    Common Iliac Veins
    Drain blood from the pelvis and lower limbs.
    Posterior Interventricular Branch
    Supplies posterior interventricular septum.
    Moderator Band
    Muscular band of heart tissue found in the right ventricle.
    Internal Carotid Artery
    Supplies blood to the brain.
    Circumflex Branch
    Curves around to the posterior heart.
    Left Inferior Pulmonary Vein
    Returns oxygenated blood from left lung.
    Internal Iliac Arteries
    Supply blood to pelvic organs.
    Brachiocephalic Veins
    Formed by the union of subclavian and internal jugular veins.
    Parietal Layer
    Lines the internal surface of the fibrous pericardium.
    Great Cardiac Vein
    Drains blood from the anterior surface of the heart.
    Popliteal Arteries
    Continuation of femoral arteries behind the knee.
    Posterior Tibial Arteries
    Supply posterior compartment of the leg.
    Aortic Arch
    Curved portion of the aorta giving rise to major arteries.
    Visceral Layer (Epicardium)
    Covers the external surface of the heart.
    Trabeculae Carneae
    Irregular muscular columns on the walls of the ventricles.
    Heart
    Muscular organ responsible for pumping blood throughout the body.
    Right Atrium
    Receives deoxygenated blood from the body.
    Papillary Muscles
    Muscles that anchor the heart valves via chordae tendineae.
    Crista Terminalis
    Smooth muscular ridge in the right atrium.

    Tricuspid Valve

    Reviewed by our medical team

    Valve between the right atrium and right ventricle.

    Overview

    The tricuspid valve is one of the four main valves of the heart and is located between the right atrium and the right ventricle. As an atrioventricular (AV) valve, it regulates the flow of blood from the right atrium into the right ventricle and prevents backflow during ventricular contraction. The valve is named for its three cusps or leaflets, which open and close in coordination with the cardiac cycle.

    Location

    The tricuspid valve is situated in the right atrioventricular orifice, which connects the right atrium to the right ventricle. In surface anatomy, it lies behind the sternum, approximately at the level of the 4th and 5th intercostal spaces. It is positioned slightly inferior and anterior to the mitral valve (left AV valve).

    Structure

    The tricuspid valve consists of several key components that ensure unidirectional blood flow:

    • Leaflets: Typically three — anterior, posterior, and septal — though variations exist

    • Chordae tendineae: Fibrous cords that connect the valve leaflets to papillary muscles in the right ventricle

    • Papillary muscles: Usually three (anterior, posterior, and septal) that contract to tighten the chordae during systole

    • Fibrous annulus: A connective tissue ring that anchors the valve to the myocardium

    The valve is lined by endocardium and integrates seamlessly with the muscular walls of the heart.

    Function

    The primary function of the tricuspid valve is to:

    • Allow blood flow from the right atrium into the right ventricle during diastole

    • Prevent regurgitation (backward flow) of blood into the right atrium during ventricular systole

    Proper timing of valve opening and closure ensures that blood moves efficiently through the right side of the heart toward the pulmonary circulation.

    Physiological Role(s)

    The tricuspid valve plays several physiological roles essential to cardiac function:

    • Maintains one-way flow: Ensures that venous return from the systemic circulation moves forward into the pulmonary circuit

    • Regulates right ventricular preload: Controls ventricular filling during diastole

    • Protects atrial function: Prevents high-pressure systolic backflow into the low-pressure right atrium

    Additionally, the synchronized function of the tricuspid and mitral valves is essential for overall hemodynamic balance.

    Clinical Significance

    Disorders of the tricuspid valve can significantly impact right heart function and systemic venous circulation:

    • Tricuspid Regurgitation: Incomplete valve closure allows backflow into the right atrium. Causes include right ventricular dilation, pulmonary hypertension, infective endocarditis, and congenital abnormalities.

    • Tricuspid Stenosis: Narrowing of the valve, usually from rheumatic fever, leads to right atrial enlargement and systemic venous congestion (e.g., hepatomegaly, ascites, peripheral edema).

    • Ebstein’s Anomaly: A congenital malformation characterized by apical displacement of the septal leaflet into the right ventricle, leading to regurgitation and arrhythmias.

    • Infective Endocarditis: The tricuspid valve is commonly affected in intravenous drug users due to direct entry of pathogens into the venous system.

    • Pacemaker-Lead Associated Dysfunction: Right heart device leads may interfere with valve function, contributing to tricuspid regurgitation.

    • Diagnostic Imaging: Tricuspid valve function is assessed using transthoracic or transesophageal echocardiography, often with Doppler imaging for evaluating regurgitation or stenosis severity.

    • Surgical and Interventional Treatment: Severe valve dysfunction may require tricuspid valve repair (annuloplasty) or replacement with bioprosthetic or mechanical valves. Transcatheter tricuspid valve therapies are emerging in high-risk patients.

    Evaluation and management of tricuspid valve diseases are critical in preventing progressive right heart failure and systemic venous hypertension.

    Did you know? Your veins contain one-way valves to prevent blood from flowing backward.