Logo

    Related Topics

    From Cardiovascular System

    Popliteal Arteries
    Continuation of femoral arteries behind the knee.
    Pericardial Cavity
    Space between parietal and visceral layers of the serous pericardium containing fluid.
    Trabeculae Carneae
    Irregular muscular columns on the walls of the ventricles.
    Thoracic Aorta
    Part of descending aorta within the chest.
    Mitral Valve
    Valve between the left atrium and left ventricle.
    Anterior Cardiac Veins
    Drain directly into the right atrium.
    Small Cardiac Vein
    Drains right atrium and ventricle.
    Subclavian Arteries
    Supply blood to the arms and part of the brain.
    Crista Terminalis
    Smooth muscular ridge in the right atrium.
    Popliteal Veins
    Drain blood from the knee region.
    Subclavian Veins
    Carry blood from the upper limbs to the heart.
    Small Saphenous Vein
    Superficial vein of the posterior leg.
    Pericardium
    Double-walled sac containing the heart and the roots of the great vessels.
    Descending Aorta
    Portion of the aorta descending through thorax and abdomen.
    Marginal Branch
    Supplies right ventricle along the margin.
    Interventricular Septum
    Wall separating the left and right ventricles.
    Cephalic Veins
    Superficial veins of the lateral upper limb.
    Abdominal Aorta
    Part of descending aorta within the abdomen.
    Fibrous Pericardium
    Outer layer of the pericardium made of dense connective tissue.
    Inferior Vena Cava
    Returns deoxygenated blood from lower body.
    Ulnar Arteries
    Supply the medial aspect of the forearm and hand.
    Pulmonary Trunk
    Carries deoxygenated blood from right ventricle to lungs.
    Superior Vena Cava
    Returns deoxygenated blood from upper body.
    Aortic Arch
    Curved portion of the aorta giving rise to major arteries.
    Internal Carotid Artery
    Supplies blood to the brain.

    Tricuspid Valve

    Reviewed by our medical team

    Valve between the right atrium and right ventricle.

    Overview

    The tricuspid valve is one of the four main valves of the heart and is located between the right atrium and the right ventricle. As an atrioventricular (AV) valve, it regulates the flow of blood from the right atrium into the right ventricle and prevents backflow during ventricular contraction. The valve is named for its three cusps or leaflets, which open and close in coordination with the cardiac cycle.

    Location

    The tricuspid valve is situated in the right atrioventricular orifice, which connects the right atrium to the right ventricle. In surface anatomy, it lies behind the sternum, approximately at the level of the 4th and 5th intercostal spaces. It is positioned slightly inferior and anterior to the mitral valve (left AV valve).

    Structure

    The tricuspid valve consists of several key components that ensure unidirectional blood flow:

    • Leaflets: Typically three — anterior, posterior, and septal — though variations exist

    • Chordae tendineae: Fibrous cords that connect the valve leaflets to papillary muscles in the right ventricle

    • Papillary muscles: Usually three (anterior, posterior, and septal) that contract to tighten the chordae during systole

    • Fibrous annulus: A connective tissue ring that anchors the valve to the myocardium

    The valve is lined by endocardium and integrates seamlessly with the muscular walls of the heart.

    Function

    The primary function of the tricuspid valve is to:

    • Allow blood flow from the right atrium into the right ventricle during diastole

    • Prevent regurgitation (backward flow) of blood into the right atrium during ventricular systole

    Proper timing of valve opening and closure ensures that blood moves efficiently through the right side of the heart toward the pulmonary circulation.

    Physiological Role(s)

    The tricuspid valve plays several physiological roles essential to cardiac function:

    • Maintains one-way flow: Ensures that venous return from the systemic circulation moves forward into the pulmonary circuit

    • Regulates right ventricular preload: Controls ventricular filling during diastole

    • Protects atrial function: Prevents high-pressure systolic backflow into the low-pressure right atrium

    Additionally, the synchronized function of the tricuspid and mitral valves is essential for overall hemodynamic balance.

    Clinical Significance

    Disorders of the tricuspid valve can significantly impact right heart function and systemic venous circulation:

    • Tricuspid Regurgitation: Incomplete valve closure allows backflow into the right atrium. Causes include right ventricular dilation, pulmonary hypertension, infective endocarditis, and congenital abnormalities.

    • Tricuspid Stenosis: Narrowing of the valve, usually from rheumatic fever, leads to right atrial enlargement and systemic venous congestion (e.g., hepatomegaly, ascites, peripheral edema).

    • Ebstein’s Anomaly: A congenital malformation characterized by apical displacement of the septal leaflet into the right ventricle, leading to regurgitation and arrhythmias.

    • Infective Endocarditis: The tricuspid valve is commonly affected in intravenous drug users due to direct entry of pathogens into the venous system.

    • Pacemaker-Lead Associated Dysfunction: Right heart device leads may interfere with valve function, contributing to tricuspid regurgitation.

    • Diagnostic Imaging: Tricuspid valve function is assessed using transthoracic or transesophageal echocardiography, often with Doppler imaging for evaluating regurgitation or stenosis severity.

    • Surgical and Interventional Treatment: Severe valve dysfunction may require tricuspid valve repair (annuloplasty) or replacement with bioprosthetic or mechanical valves. Transcatheter tricuspid valve therapies are emerging in high-risk patients.

    Evaluation and management of tricuspid valve diseases are critical in preventing progressive right heart failure and systemic venous hypertension.

    Did you know? The human circulatory system is about 60,000 miles long.